Approximate Posterior Model Probabilities in Additive Models via the Group LASSO

نویسندگان

  • S. McKay
  • Curtis
  • Subhashis Ghosal
چکیده

The literature is replete with variable selection techniques for the classical linear regression model. It is only relatively recently that authors have begun to explore variable selection in fully nonparametric and additive regression models. One such variable selection technique is a generalization of the LASSO called the group LASSO. In this work, we demonstrate a connection between the group LASSO and Bayesian inference in additive models with a multivariate Laplace prior for model parameters similar to the connection between the LASSO and Bayesian inference in the linear model with a univariate Laplace prior for regression coefficients. We use this connection to derive approximate posterior model probabilities for additive models. We use the concept of regular and nonregular models to reduce the size of the model space and avoid costly computations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Models: Approximations for Probabilities

Welch & Peers (1963) used a root-information prior to obtain posterior probabilities for a scalar parameter exponential model and showed that these Bayes probabilities had the confidence property to second order asymptotically. An important undercurrent of this indicates that the constant information reparameterization provides location model structure, for which the confidence property ...

متن کامل

Fast Bayesian model assessment for nonparametric additive regression

Variable selection techniques for the classical linear regression model have been widely investigated. Variable selection in fully nonparametric and additive regression models has been studied more recently. A Bayesian approach for nonparametric additive regression models is considered, where the functions in the additivemodel are expanded in a B-spline basis and a multivariate Laplace prior is...

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Variable Selection in Nonparametric Additive Models.

We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is "small" relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expan...

متن کامل

Path consistent model selection in additive risk model via Lasso.

As a flexible alternative to the Cox model, the additive risk model assumes that the hazard function is the sum of the baseline hazard and a regression function of covariates. For right censored survival data when variable selection is needed along with model estimation, we propose a path consistent model selector using a modified Lasso approach, under the additive risk model assumption. We sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008